Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Ping Shen ${ }^{\text {a }}$ and Ai-Hua Yuan ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003,
People's Republic of China
Correspondence e-mail:
xiaopingshen@163.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.063$
$w R$ factor $=0.110$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[4-benzoyl-5-methyl-2-phenyl-2H-pyrazol$3(4 H)$-onato- $\left.\kappa^{2} O, O^{\prime}\right]$ bis(N, N-dimethylform-amide- κO)cadmium(II)

In the structure of the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$ or $\left[\mathrm{Ni}(\mathrm{PMBP})_{2}(\mathrm{DMF})_{2}\right]$, where HPMBP is 4 -benzoyl-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one, the $\mathrm{Cd}^{\text {II }}$ atom, which lies on an inversion centre, is in a distorted octahedral coordination environment. The metal is coordinated by four O atoms from the two symmetry-related chelating PMBP $^{-}$ligands and O atoms from the two symmetry-related DMF ligands.

Comment

Many β-diketonate complexes such as those of acetylacetonate, hexafluoroacetonate, 1,1,1-trifluoro-3-(2-thieny)acetonate and benzoylacetonate (Dong et al., 1999; Li, et al., 1999, 2003) have been reported. 4-Benzoyl-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one (HPMBP) has also been widely studied as an extractant and chelating agent for metal ions (Okafor, 1981; Barkat et al., 2004). Recently PMBP $^{-}$metal complexes have attracted attention because of their potential biological activity, for example, as antibacterial and antiviral agents (Xu et al., 2003). Several PMBP ${ }^{-}$metal complexes were also structurally characterized (Miao et al., 1991; Xu et al., 2003; Shen \& Yuan, 2004).

(I)

We report here the preparation and the crystal structure of the title complex, $\left[\mathrm{Cd}(\mathrm{PMBP})_{2}(\mathrm{DMF})_{2}\right]$, (I) (Fig. 1). The molecule has a centre of symmetry at the $\mathrm{Cd}^{\mathrm{II}}$ atom, which has a distorted octahedral environment. The metal ion is coordinated by four O atoms from two symmetry-related chelating bidentate PMBP^{-}ligands that make up the equatorial plane and O atoms from two mutually trans symmetry-related DMF molecules in axial sites. The $\mathrm{Cd} 1-\mathrm{O} 3$ bond length to the DMF ligand is 2.309 (3) \AA, slightly longer than the $\mathrm{Cd}-\mathrm{O}$ distances [2.206 (3) and 2.277 (3) \AA] to the bidentate PMBP $^{-}$ligands in

Received 22 July 2005 Accepted 29 July 2005 Online 6 August 2005

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related by the symmetry code ($-x,-y,-z$).

the equatorial plane (Table 1). The cis $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles range from 84.73 (9) to 95.27 (9) ${ }^{\circ}$. The $\mathrm{N} 1-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{C} 13$, $\mathrm{C} 13-\mathrm{C} 14$ and $\mathrm{C} 14-\mathrm{C} 16$ bond lengths in the pyrazole ring are in the range 1.373 (5)-1.435 (5) \AA, suggesting some delocalization. However, the shortest bond, N2-C16, in the pyrazole ring $[1.306$ (5) Å] can be assigned as a double bond. The other $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances in the ligand system suggest a significant degree of conjugation throughout the PMBP^{-} ligand.

The pyrazole ring is essentially planar, with a maximum deviation of 0.006 (2) Å for C13. Atoms O1, O2 and C13-C15 are also approximately coplanar [maximum deviation = 0.033 (3) \AA for C15]. The dihedral angle between the $\mathrm{O} 1 / \mathrm{O} 2 /$ $\mathrm{C} 13-\mathrm{C} 15$ plane and the pyrazole ring is $1.7(2)^{\circ}$, suggesting some π delocalization in the β-diketonate enol ring. The two phenyl rings in the ligand are not coplanar with the pyrazole system; the dihedral angles between the pyrazole plane and
the C1-C6 and C7-C12 phenyl planes are 14.8 (2) and $88.77(14)^{\circ}$, respectively. The dihedral angle between the two phenyl planes is 78.13 (13) ${ }^{\circ}$.

No significant intermolecular interactions were found in the crystal structure, the distances between planes being close to the sums of van der Waals radii (Fig. 2).

Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.290 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a DMF solution $(10 \mathrm{ml})$ of $\operatorname{HPMBP}(0.556 \mathrm{~g}, 2.0 \mathrm{mmol})$. The pH of the solution was adjusted to 6 with NaOH and the reagents were stirred for 30 min at room temperature. Well shaped colourless single crystals suitable for X-ray diffraction analysis were obtained from the filtrate after about one week at room temperature. Analysis found: C 58.97, H 4.94, N 10.29%; calculated for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{CdN}_{6} \mathrm{O}_{6}$: C 59.08, H 4.96, N 10.34\%.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$

$M_{r}=813.18$

Monoclinic, $P 2_{1} / n$
$a=10.4835$ (19) £
$b=9.4768(18) \AA$
$c=18.660$ (4) \AA
$\beta=90.981(4)^{\circ}$
$V=1853.6$ (6) \AA^{3}
$Z=2$

$D_{x}=1.457 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 6769 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colourless
$0.34 \times 0.21 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan
(North et al., 1968)
$T_{\text {min }}=0.838, T_{\text {max }}=0.883$
20261 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.110$
$S=1.09$
4248 reflections
241 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.206(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.401(4)$
$\mathrm{Cd} 1-\mathrm{O} 2$	$2.277(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.420(5)$
$\mathrm{Cd} 1-\mathrm{O} 3$	$2.309(3)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.306(5)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.267(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.431(5)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.255(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.416(5)$
$\mathrm{O} 3-\mathrm{C} 18$	$1.229(5)$	$\mathrm{C} 14-\mathrm{C} 16$	$1.435(5)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.373(5)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	180	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$90.26(11)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	$95.27(9)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$92.81(12)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$84.73(9)$	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3$	$89.74(11)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	180	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	180
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$87.19(12)$		

Symmetry code: (i) $-x,-y,-z$.

H atoms were placed in idealized positions and refined as riding, with C-H distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms and the H atom attached to C 18 , and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

metal-organic papers

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province (No. 01 KJB150010), People's Republic of China.

References

Barkat, D., Kameche, M., Tayeb, A., Benabdellah, T. \& Derriche, Z. (2004). Phys. Chem. Liq. 42, 53-61.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, Y. B., Smith, M. D., Layland, R. C. \& zur Loye, H.-C. (1999). Inorg. Chem. 38, 5027-5033.
Li, B.-L., Zhou, J.-Z., Duan, C.-Y., Liu, Y.-J., Wei, X.-W. \& Xu, Z. (1999). Acta Cryst. C55, 165-167.
Li, B. L., Zhu, L. M., Wang, S. W., Lang, J. P. \& Zhang, R. (2003). J. Coord. Chem. 56, 933-941.
Miao, F. M., Liu, X. L. \& Li, Y. Q. (1991). Chin. Inorg. Chem. 7, 129-132
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okafor, E. C. (1981). Spectrochim. Acta Sect. A, 37, 945-950.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997) SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, X.-P. \& Yuan, A.-H. (2004). Acta Cryst. E60, m1228-m1230.
Xu, H. Z., Zhang, X. \& Wang, J. L. (2003). Chin. J. Appl. Chem. 20, 250-253.

